Static Equipment
Pressure Vessel
Pressure vessels are used in a variety of applications. These include the industry and the private sector. They appear in these sectors respectively as industrial compressed air receivers and domestic hot water storage tanks, other examples of pressure vessels are: diving cylinder, recompression chamber, distillation towers, autoclaves and many other vessels in mining or oil refineries and petrochemical plants, nuclear reactor vessel, habitat of a space ship, habitat of a submarine, pneumatic reservoir, hydraulic reservoir under pressure, rail vehicle airbrake reservoir, road vehicle airbrake reservoir and storage vessels for liquified gases such as ammonia, chlorine, propane, butane and LPG.
In the industrial sector, pressure vessels are designed to operate safely at a specific pressure and temperature, technically referred to as the "Design Pressure" and "Design Temperature". A vessel that is inadequately designed to handle a high pressure constitutes a very significant safety hazard. Because of that, the design and certification of pressure vessels is governed by design codes such as the ASME Boiler and Pressure Vessel Code in North America, the Pressure Equipment Directive of the EU (PED), Japanese Industrial Standard (JIS), CSA B51 in Canada, AS1210 in Australia and other international standards like Lloyd's, Germanischer Lloyd, Det Norske Veritas, Stoomwezen etc.
Atmospheric Tank
Definition of an atmospheric tank means a storage tank which has been designed (emphasis added) to operate at pressures from atmospheric through 0.5 psig (pounds per square inch gauge, 3.45 kpa.) An atmospheric tank containing a flammable liquid that has a feeder connection to the fill process you described would not be covered by the PSM standard. The rationale for this interpretation is that the process described above only included the activities of storage and associate transfer to storage in containers which for the purpose of the PSM standard are considered equivalent to atmospheric tanks which are excepted from PSM coverage as noted previously.
Heat Exchanger
A device used to transfer heat from a fluid flowing on one side of a barrier to another fluid (or fluids) flowing on the other side of the barrier.
When used to accomplish simultaneous heat transfer and mass transfer, heat exchangers become special equipment types, often known by other names. When fired directly by a combustion process, they become furnaces, boilers, heaters, tube-still heaters, and engines. If there is a change in phase in one of the flowing fluids—condensation of steam to water, for example—the equipment may be called a chiller, evaporator, sublimator, distillation-column reboiler, still, condenser, or cooler-condenser.
Heat exchangers may be so designed that chemical reactions or energy-generation processes can be carried out within them. The exchanger then becomes an integral part of the reaction system and may be known, for example, as a nuclear reactor, catalytic reactor, or polymerizer.
Heat exchangers are normally used only for the transfer and useful elimination or recovery of heat without an accompanying phase change. The fluids on either side of the barrier are usually liquids, but they may also be gases such as steam, air, or hydrocarbon vapors; or they may be liquid metals such as sodium or mercury. Fused salts are also used as heat-exchanger fluids in some applications.
Most often the barrier between the fluids is a metal wall such as that of a tube or pipe. However, it can be fabricated from flat metal plate or from graphite, plastic, or other corrosion-resistant materials of construction.
Heat exchangers find wide application in the chemical process industries, including petroleum refining and petrochemical processing; in the food industry, for example, for pasteurization of milk and canning of processed foods; in the generation of steam for production of power and electricity; in nuclear reaction systems; in aircraft and space vehicles; and in the field of cryogenics for the low-temperature separation of gases. Heat exchangers are the workhorses of the entire field of heating, ventilating, air-conditioning, and refrigeration. See also Conduction (heat); Convection (heat); Cooling tower; Distillation; Evaporator; Heat radiation; Heat transfer; Vapor condenser.